Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry

This is the example A7 of the EURACHEM / CITAC Guide "Quantifying Uncertainty in Analytical Measurement", Second Edition.

The amount content of lead in water is measured using Isotope Dilution Mass Spectrometry (IDMS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

In this case a 'double' isotope dilution is applied. It uses a well characterised (ideally certified) material of natural isotopic composition as a primary assay standard. Two blends are then prepared: blend b, which is a blend between known masses of the sample and the enriched spike, and blend b', which is the blend between the enriched spike and the primary assay standard. The isotope ratios of the primary assay standard, the spike, the sample and the two blends are measured using ICP-MS. Together with the weighing data of the blends, the amount content of lead in the sample can be calculated.

Model Equation:

{equation for the double isotope dilution}

$$c_{x} = (c_{z} * m_{y1} / m_{x} * m_{z} / m_{y2} * (K_{y1} * R_{y1} - K_{b1} * R_{b1}) / (K_{b1} * R_{b1} - K_{x1} * R_{x1}) * (K_{b2} * R_{b2} - K_{z1} * R_{z1}) / (K_{y1} * R_{y1} - K_{b2} * R_{b2}) / (\Sigma K_{zi} R_{zi}) * (\Sigma K_{xi} R_{xi})) - c_{blank};$$

$$\Sigma K_{xi}R_{xi} = K_{x1} * R_{x1} + K_{x2} * R_{x2} + K_{x3} * R_{x3} + K_{x4} * R_{x4};$$

$$\Sigma K_{zi}R_{zi} = K_{z1} * R_{z1} + K_{z2} * R_{z2} + K_{z3} * R_{z3} + K_{z4} * R_{z4};$$

{calculation of the molar mass of the lead of the primary assay standard 1}

$$\mathbf{M}_{\mathsf{Pb}\,\mathsf{Assay1}} = (\mathbf{K}_{z1} \,\,^*\,\mathbf{R}_{z1} \,\,^*\,\mathbf{M}_{z1} + \mathbf{K}_{z2} \,\,^*\,\mathbf{R}_{z2} \,\,^*\,\mathbf{M}_{z2} + \mathbf{K}_{z3} \,\,^*\,\mathbf{R}_{z3} \,\,^*\,\mathbf{M}_{z3} + \mathbf{K}_{z4} \,\,^*\,\mathbf{R}_{z4} \,\,^*\,\mathbf{M}_{z4}) \,/ \, (\Sigma \mathbf{K}_{zi} \mathbf{R}_{zi});$$

{concentration of the primary assay standard z which is used for the double IDMS}

$$c_{z} = m_{2} / d_{2} * m_{1} * w / d_{1} / M_{Pb Assay1} * k_{mol};$$

{calculation of the K-factors for the various isotope ratios measured}

$$K_{b1} = K_{0 \ b1} + K_{bias \ b1};$$

$$K_{b2} = K_{0 \ b2} + K_{bias \ b2};$$

$$K_{x1} = K_{0 x1} + K_{bias x1};$$

$$K_{x2} = K_{0 x2} + K_{bias x2};$$

$$K_{x3} = K_{0,x3} + K_{bias,x3};$$

$$K_{x4} = K_{0_x4} + K_{bias_x4};$$

$$K_{y1} = K_{0_y1} + K_{bias_y1};$$

$$\mathbf{K}_{z1} = \mathbf{K}_{0_z1} + \mathbf{K}_{\text{bias}_z1}$$

$$K_{z2} = K_{0_{z2}} + K_{bias_{z2}};$$

$$K_{z3} = K_{0_z3} + K_{bias_z3}$$

$$\mathsf{K}_{\mathsf{z4}} = \mathsf{K}_{0_{\mathsf{z4}}} + \mathsf{K}_{\mathsf{bias}_{\mathsf{z4}}};$$

Date: 08/29/2007 File: EURACHEM A7.smu

Page 1 of 15

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

+i+i . . . 4 0

Quantity	Unit	Definition	
C _x	$p_x = \mu mol/g$ amount content of the sample x		
Cz	c _z μmol/g amount content of the primary assay standard z		
m _{y1}	g	mass of enriched spike in blend b	
m _x	g	mass of sample in blend b	
m _z	g	mass of primary assay standard in blend b'	
m _{y2}	g	mass of enriched spike in blend b'	
K _{y1}		mass bias correction of R _{y1}	
R _{y1}		measured ratio of enriched isotope to reference isotope in the enr $n(^{208}Pb)/n(^{206}Pb)$	iched spike,
K _{b1}		mass bias correction of R _{b1}	
R _{b1}		measured ratio of blend b, n(²⁰⁸ Pb)/n(²⁰⁶ Pb)	
K _{x1}		mass bias correction of R _{x1}	
R _{x1}		measured ratio of enriched isotope to reference isotope in the sar $n(^{208}Pb)/n(^{206}Pb)$	nple x,
K _{b2}		mass bias correction of R _{b2}	
R _{b2}		measured ratio of blend b', n(²⁰⁸ Pb)/n(²⁰⁶ Pb)	
K _{z1}		mass bias correction of R _{z1}	
R _{z1}		measured ratio of enriched isotope to reference isotope in the prinstandard z, $n(^{208}Pb)/n(^{206}Pb)$	nary assay
$\Sigma K_{zi} R_{zi}$		sum of all mass bias corrected ratios of the primary assay standa	rd
$\Sigma K_{xi} R_{xi}$		sum of all mass bias corrected ratios of the sample	
C _{blank}	µmol/g	observed amount content in procedure blank	
K _{x2}		mass bias correction of R _{x2}	
R _{x2}		measured ratio of sample, n(²⁰⁶ Pb)/n(²⁰⁶ Pb)	
K _{x3}		mass bias correction of R_{x3}	
R _{x3}		measured ratio of sample, n(²⁰⁷ Pb)/n(²⁰⁶ Pb)	
K _{x4}		mass bias correction of R _{x4}	
R _{x4}		measured ratio of sample, n(²⁰⁴ Pb)/n(²⁰⁶ Pb)	
K _{z2}	K _{z2} mass bias correction of R _{z2}		
R _{z2}	R _{z2} measured ratio of sample, n(²⁰⁶ Pb)/n(²⁰⁶ Pb)		
K _{z3}	K _{z3} mass bias correction of R _{z3}		
R _{z3}	R _{z3} measured ratio of sample, n(²⁰⁷ Pb)/n(²⁰⁶ Pb)		
K _{z4}	K_{z4} mass bias correction of R_{z4}		
R _{z4}		measured ratio of sample, n(²⁰⁴ Pb)/n(²⁰⁶ Pb)	
M _{Pb Assay1}	g/mol molar mass of the primary assay standard		
M _{z1}	g/mol nuclidic mass of ²⁰⁸ Pb		
M _{z2}	g/mol nuclidic mass of ²⁰⁶ Pb		
N.4	a/mol nuclidic mass of ²⁰⁷ Pb		

Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry

Quantity	Unit	Definition
M _{z4}	g/mol	nuclidic mass of ²⁰⁴ Pb
m ₂	g	aliquot of the first dilution of the primary assay standard
d ₂	g	total mass of the second dilution of the primary assay standard
m ₁	g	mass of the lead piece for primary assay standard
w	g/g	purity of the metallic lead piece, expressed as mass fraction
d ₁	g	total mass of first dilution of the primary assay standard
k _{mol}	µmol/mol	conversion factor $10^6 \mu mol = 1 mol$
K _{0_b1}		mass bias correction of R _{b1} as determined at time 0
K _{bias_b1}		other contributions to the mass bias of R _{b1}
K _{0_b2}		mass bias correction of R_{b2} as determined at time 0
$K_{bias_{b2}}$		other contributions to the mass bias of R_{b2}
K _{0_x1}		mass bias correction of R_{x1} as determined at time 0
K _{bias_x1}		other contributions to the mass bias of R _{x1}
K _{0_x2}		mass bias correction of R_{x2} as determined at time 0
$K_{bias_{x2}}$		other contributions to the mass bias of R_{x2}
K _{0_x3}		mass bias correction of R_{x3} as determined at time 0
$K_{bias_{x3}}$		other contributions to the mass bias of R_{x3}
K _{0_x4}		mass bias correction of R_{x4} as determined at time 0
$K_{bias_{x4}}$		other contributions to the mass bias of R_{x4}
K _{0_y1}		mass bias correction of R_{y1} as determined at time 0
K _{bias_y1}		other contributions to the mass bias of R _{y1}
K _{0_z1}		mass bias correction of R_{z1} as determined at time 0
$K_{bias_{z1}}$		other contributions to the mass bias of R _{z1}
K _{0_z2}		mass bias correction of R_{z2} as determined at time 0
$K_{bias_{22}}$		other contributions to the mass bias of R _{z2}
K _{0_z3}		mass bias correction of R_{z3} as determined at time 0
K _{bias_z3}		other contributions to the mass bias of R _{z3}
K _{0_z4}		mass bias correction of R_{z4} as determined at time 0
K _{bias_z4}		other contributions to the mass bias of R _{z4}
m _{y1} :	Тур	e B normal distribution

Value: 1.1360 g Expanded Uncertainty: 0.0002 g Coverage Factor: 1

Weighings are performed by a dedicated mass metrology lab. The procedure applied was a bracketing technique using calibrated weights and a comparator. The bracketing technique was repeated at least six times for every sample mass determination. Buoyancy correction was applied. The uncertainties from the weighing certificates were treated as standard uncertainties, Type B.

	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry			
 m_x: Type B normal distribution Value: 1.0440 g Expanded Uncertainty: 0.0002 g Coverage Factor: 1 Weighings are performed by a dedicated mass metrology lab. The procedure applied was a bracketing technique using calibrated weights and a comparator. The bracketing technique was repeated at least six times for every sample mass determination. Buoyancy correction was applied. The uncertainties from the weighing certificates were treated as standard uncertainties. Type B 				
m _z :	Type B normal distribution Value: 1.1029 g Expanded Uncertainty: 0.0002 g Coverage Factor: 1			
Weighings are p technique using times for every s weighing certific	performed by a dedicated mass metrology lab. The procedure applied was calibrated weights and a comparator. The bracketing technique was repea sample mass determination. Buoyancy correction was applied. The uncerta- cates were treated as standard uncertainties, Type B.	a bracketing ated at least six ainties from the		
m _{y2} :	Type B normal distribution Value: 1.0654 g Expanded Uncertainty: 0.0002 g Coverage Factor: 1			
Weighings are p technique using times for every s weighing certific	Weighings are performed by a dedicated mass metrology lab. The procedure applied was a bracketing technique using calibrated weights and a comparator. The bracketing technique was repeated at least six times for every sample mass determination. Buoyancy correction was applied. The uncertainties from the weighing certificates were treated as standard uncertainties, Type B.			
R _{y1} :	Type A summarized Mean: 0.00064 Standard Uncertainty: =0.00004/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	been measured 8 times. The experimental uncertainty is therefore divided l	by sqrt(8).		
R _{b1} :	Type A summarized Mean: 0.29360 Standard Uncertainty: =0.00073/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	peen measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
R _{x1} :	Type A summarized Mean: 2.1402 Standard Uncertainty: =0.0054/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	been measured 8 times. The experimental uncertainty is therefore divided l	by sqrt(8).		
R _{b2} :	Type A summarized Mean: 0.5050 Standard Uncertainty: =0.0013/sqrt(8) Degrees of Freedom: 7			
Each ratio has been measured 8 times. The experimental uncertainty is therefore divided by sqrt(8).				
Date: 08/29/2007	File: EURACHEM A7.smu	Page 4 of 15		

	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry			
R _{z1} :	Type A summarized Mean: 2.1429 Standard Uncertainty: =0.0054/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	een measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
C_{blank}:	Type A summarized Mean: 4.5·10 ⁻⁷ μmol/g Standard Uncertainty: =4.0e-7/sqrt(4) Degrees of Freedom: 3			
The procedure t times. The expe	plank was measured using external calibration. The procedure blank was r rimental standard deviation is divided by sqrt(4) to obtain the standard unc	neasured four certainty.		
R _{x2} :	Constant Value: 1			
This is the ratio	of n(²⁰⁶ Pb)/n(²⁰⁶ Pb), which is by definition equal to 1.			
R _{x3} :	R _{x3} : Type A summarized Mean: 0.9142 Standard Uncertainty: =0.0032/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	een measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
R _{x4} :	Type A summarized Mean: 0.05901 Standard Uncertainty: =0.00035/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	een measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
R _{z2} :	Constant Value: 1			
This is the ratio	of n(²⁰⁶ Pb)/n(²⁰⁶ Pb), which is by definition equal to 1.			
R _{z3} :	Type A summarized Mean: 0.9147 Standard Uncertainty: =0.0032/sqrt(8) Degrees of Freedom: 7			
Each ratio has b	een measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
R _{z4} : Type A summarized Mean: 0.05870 Standard Uncertainty: =0.00035/sqrt(8) Degrees of Freedom: 7				
Each ratio has b	een measured 8 times. The experimental uncertainty is therefore divided	by sqrt(8).		
M _{z1} :	Type B normal distribution Value: 207.976636 g/mol Expanded Uncertainty: 0.000003 g/mol Coverage Factor: 1			
The nuclidic ma Wapstra, Nuclea	sses and their respective uncertainties are taken from literature. G. Audi a ar Physics, A565 (1993).	nd A. H.		
Date: 08/29/2007	File: EURACHEM A7.smu	Page 5 of 15		

	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry	
M _{z2} :	Type B normal distribution Value: 205.974449 g/mol Expanded Uncertainty: 0.000003 g/mol Coverage Factor: 1	
The nuclidic ma Wapstra, Nuclea	sses and their respective uncertainties are taken from literature. G. Audi a ar Physics, A565 (1993).	nd A. H.
M _{z3} :	Type B normal distribution Value: 206.975880 g/mol Expanded Uncertainty: 0.000003 g/mol Coverage Factor: 1	
The nuclidic ma Wapstra, Nuclea	sses and their respective uncertainties are taken from literature. G. Audi a ar Physics, A565 (1993).	nd A. H.
M _{z4} :	Type B normal distribution Value: 203.973028 g/mol Expanded Uncertainty: 0.000003 g/mol Coverage Factor: 1	
The nuclidic ma Wapstra, Nuclea	sses and their respective uncertainties are taken from literature. G. Audi a ar Physics, A565 (1993).	nd A. H.
m ₂ :	Type B normal distribution Value: 1.0292 g Expanded Uncertainty: 0.0002 g Coverage Factor: 1	
Weighings are p technique using times for every s weighing certific	performed by a dedicated mass metrology lab. The procedure applied was calibrated weights and a comparator. The bracketing technique was repeas sample mass determination. Buoyancy correction was applied. The uncerta- cates were treated as standard uncertainties, Type B.	a bracketing ated at least six ainties from the
d ₂ :	Type B normal distribution Value: 99.931 g Expanded Uncertainty: 0.01 g Coverage Factor: 1	
Weighings are p technique using times for every s weighing certific	performed by a dedicated mass metrology lab. The procedure applied was calibrated weights and a comparator. The bracketing technique was repeas sample mass determination. Buoyancy correction was applied. The uncerta ates were treated as standard uncertainties, Type B.	a bracketing ated at least six ainties from the
m ₁ :	Type B normal distribution Value: 0.36544 g Expanded Uncertainty: 0.00005 g Coverage Factor: 1	
Weighings are p technique using times for every s weighing certific	performed by a dedicated mass metrology lab. The procedure applied was calibrated weights and a comparator. The bracketing technique was repeas sample mass determination. Buoyancy correction was applied. The uncerta- tates were treated as standard uncertainties, Type B.	a bracketing ated at least six ainties from the
w:	Type B normal distribution Value: 0.99999 g/g Expanded Uncertainty: 0.000005 g/g Coverage Factor: 1	
The purity of the	e metalic lead can be obtained through analysis or a supplier's certificate.	
Date: 08/29/2007	File: EURACHEM A7.smu	Page 6 of 15
	Generated with GUM Workbo	ench Pro Version 2.4.1.325

	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry		
d ₁ :	Type B normal distribution Value: 196.14 g Expanded Uncertainty: 0.03 g Coverage Factor: 1		
Weighings are performed by a dedicated mass metrology lab. The procedure applied was a bracketing technique using calibrated weights and a comparator. The bracketing technique was repeated at least six times for every sample mass determination. Buoyancy correction was applied. The uncertainties from the weighing certificates were treated as standard uncertainties, Type B.			
k _{mol} :	Constant Value: 1·10 ⁶ µmol/mol		
К _{0_b1} :	Type A summarized Mean: 0.9987 Standard Uncertainty: =0.0025/sqrt(8) Degrees of Freedom: 7		
The K_0 's are method the following eq	easured using a certfied isotopic reference material, and they are calculated according to uation:		
$K_0 = R_{certified}/R_{ol}$	bserved		
When looking a R _{certified} can be R _{observed} , are us	t the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of neglected for this example. Henceforth, the uncertainties on the measured ratios, eed for the uncertainties on $K_{0.}$		
The original me	asurement data for the determination of K_0 is not shown in this example.		
K _{bias_b1} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1		
This bias factor factor (these co correction, matr assumed to be is estimated fro cover all effects	is introduced to account for possible deviations in the value of the mass discrimination uld be variations over time, as well as other sources of bias, such as multiplier dead time ix effects etc.). The values of these biases are not known in this case, but they are around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which m experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to a.		
К _{0_b2} :	Type A summarized Mean: 0.9983 Standard Uncertainty: =0.0025/sqrt(8) Degrees of Freedom: 7		
The K ₀ 's are me the following eq	The K_0 's are measured using a certfied isotopic reference material, and they are calculated according to the following equation:		
$K_0 = R_{certified}/R_{ol}$	$K_0 = R_{certified}/R_{observed}$		
When looking a R _{certified} can be R _{observed} , are us	When looking at the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of $R_{certified}$ can be neglected for this example. Henceforth, the uncertainties on the measured ratios, $R_{observed}$, are used for the uncertainties on K_{0} .		
The original me	The original measurement data for the determination of K_0 is not shown in this example.		
K _{bias_b2} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1		

Date: 08/29/2007	File: EURACHEM A7.smu	Page 7 of 15
Date. 00/23/2007		

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

This bias factor is introduced to account for possible deviations in the value of the mass discrimination factor (these could be variations over time, as well as other sources of bias, such as multiplier dead time correction, matrix effects etc.). The values of these biases are not known in this case, but they are assumed to be around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which is estimated from experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to cover all effects.

K_{0_x1}: Type A summarized Mean: 0.9992 Standard Uncertainty: =0.0025/sqrt(8) Degrees of Freedom: 7

The K_0 's are measured using a certfied isotopic reference material, and they are calculated according to the following equation:

$K_0 = R_{certified}/R_{observed}$

When looking at the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of $R_{certified}$ can be neglected for this example. Henceforth, the uncertainties on the measured ratios, $R_{observed}$, are used for the uncertainties on K_{0} .

The original measurement data for the determination of K_0 is not shown in this example.

K _{bias_x1} :	Type B normal distribution Value: 0
	Expanded Uncertainty: 0.001 Coverage Factor: 1

This bias factor is introduced to account for possible deviations in the value of the mass discrimination factor (these could be variations over time, as well as other sources of bias, such as multiplier dead time correction, matrix effects etc.). The values of these biases are not known in this case, but they are assumed to be around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which is estimated from experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to cover all effects.

K _{0 x2} :	Constant
0_//	Value: 1

This mass bias correction refers to the ratio of $n(^{206}Pb)/n(^{206}Pb)$, which is by definition equal to 1 and not measured. Therefore no mass bias correction is needed, the factor is equal to 1.

Constant K_{bias_x2}: Value: 0

This mass bias correction refers to the ratio of $n(^{206}Pb)/n(^{206}Pb)$, which is by definition equal to 1 and not measured. Therefore no mass bias correction is needed, this factor is equal to 0.

K _{0_x3} :	Type A summarized
	Mean: 1.0004
	Standard Uncertainty: =0.0035/sqrt(8)
	Degrees of Freedom: 7

The K_0 's are measured using a certifed isotopic reference material, and they are calculated according to the following equation:

$K_0 = R_{certified}/R_{observed}$

When looking at the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of $R_{certified}$ can be neglected for this example. Henceforth, the uncertainties on the measured ratios, $R_{observed}$, are used for the uncertainties on K_{0} .

The original measurement data for the determination of K_0 is not shown in this example.

Date: 08/29/2007	File: EURACHEM A7.smu	Page 8 of 15
------------------	-----------------------	--------------

	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry	
K _{bias_x3} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1	
This bias factor factor (these con- correction, matr assumed to be a is estimated from cover all effects	is introduced to account for possible deviations in the value of the mass di uld be variations over time, as well as other sources of bias, such as multi ix effects etc.). The values of these biases are not known in this case, but around 0, therefore a value of 0 is applied. An uncertainty is associated to m experience. In this case a standard uncertainty of 0.001 is considered to	scrimination olier dead time they are this bias, which be sufficient to
K _{0_x4} :	Type A summarized Mean: 1.001 Standard Uncertainty: =0.006/sqrt(8) Degrees of Freedom: 7	
The K ₀ 's are me the following eq	easured using a certfied isotopic reference material, and they are calculate uation:	d according to
$K_0 = R_{certified}/R_{ob}$	pserved	
When looking at R _{certified} can be r R _{observed} , are us	t the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the consequence of this example. Henceforth, the uncertainties on the measured ed for the uncertainties on $K_{0.}$	ntribution of ratios,
The original mea	asurement data for the determination of K_0 is not shown in this example.	
K _{bias_x4} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1	
This bias factor factor (these con- correction, matr assumed to be a is estimated from cover all effects	is introduced to account for possible deviations in the value of the mass di uld be variations over time, as well as other sources of bias, such as multi ix effects etc.). The values of these biases are not known in this case, but around 0, therefore a value of 0 is applied. An uncertainty is associated to m experience. In this case a standard uncertainty of 0.001 is considered to	scrimination plier dead time they are this bias, which be sufficient to
K _{0_y1} :	Type A summarized Mean: 0.9999 Standard Uncertainty: =0.0025/sqrt(8) Degrees of Freedom: 7	
The K_0 's are me the following eq	easured using a certfied isotopic reference material, and they are calculate uation:	d according to
$K_0 = R_{certified}/R_{ob}$	pserved	
When looking at R _{certified} can be r R _{observed} , are us	t the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the consequence of this example. Henceforth, the uncertainties on the measured ed for the uncertainties on K_{0} .	ntribution of ratios,
The original mea	asurement data for the determination of K_0 is not shown in this example.	
K _{bias_y1} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1	
Date: 08/29/2007	File: EURACHEM A7.smu	Page 9 of 15

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

This bias factor is introduced to account for possible deviations in the value of the mass discrimination factor (these could be variations over time, as well as other sources of bias, such as multiplier dead time correction, matrix effects etc.). The values of these biases are not known in this case, but they are assumed to be around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which is estimated from experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to cover all effects.

K_{0_z1}: Type A summarized Mean: 0.9989 Standard Uncertainty: =0.0025/sqrt(8) Degrees of Freedom: 7

The K_0 's are measured using a certifed isotopic reference material, and they are calculated according to the following equation:

$K_0 = R_{certified}/R_{observed}$

When looking at the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of $R_{certified}$ can be neglected for this example. Henceforth, the uncertainties on the measured ratios, $R_{observed}$, are used for the uncertainties on K_{0} .

The original measurement data for the determination of K_0 is not shown in this example.

K _{bias z1} :	Type B normal distribution
—	Value: 0
	Expanded Uncertainty: 0.001
	Coverage Factor: 1

This bias factor is introduced to account for possible deviations in the value of the mass discrimination factor (these could be variations over time, as well as other sources of bias, such as multiplier dead time correction, matrix effects etc.). The values of these biases are not known in this case, but they are assumed to be around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which is estimated from experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to cover all effects.

K _{0 72} :	Constant		
0_11	Value: 1		

This mass bias correction refers to the ratio of $n(^{206}Pb)/n(^{206}Pb)$, which is by definition equal to 1 and not measured. Therefore no mass bias correction is needed, the factor is equal to 1.

Constant K_{bias_z2}: Value: 0

This mass bias correction refers to the ratio of $n(^{206}Pb)/n(^{206}Pb)$, which is by definition equal to 1 and not measured. Therefore no mass bias correction is needed, this factor is equal to 0.

$K_{0 z3}$:	Type A summarized
	Mean: 0.9993
	Standard Uncertainty: =0.0035/sqrt(8)
	Degrees of Freedom: 7

The K₀'s are measured using a certfied isotopic reference material, and they are calculated according to the following equation:

$K_0 = R_{certified}/R_{observed}$

When looking at the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of $R_{certified}$ can be neglected for this example. Henceforth, the uncertainties on the measured ratios, $R_{observed}$, are used for the uncertainties on K_{0} .

The original measurement data for the determination of K_0 is not shown in this example.

Date: 08/29/2007	File: EURACHEM A7.smu	Page 10 of 15
------------------	-----------------------	---------------

	r
	Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry
K _{bias_z3} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1
This bias factor factor (these con correction, matri assumed to be a is estimated fror cover all effects.	is introduced to account for possible deviations in the value of the mass discrimination uld be variations over time, as well as other sources of bias, such as multiplier dead time ix effects etc.). The values of these biases are not known in this case, but they are around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which m experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to
K _{0_z4} :	Type A summarized Mean: 1.0002 Standard Uncertainty: =0.006/sqrt(8) Degrees of Freedom: 7
The K ₀ 's are me the following eq	asured using a certfied isotopic reference material, and they are calculated according to uation:
$K_0 = R_{certified}/R_{ob}$	bserved
When looking at R _{certified} can be r R _{observed} , are use	t the uncertainty contributions of $R_{certified}$ and $R_{observed}$, it is clear that the contribution of neglected for this example. Henceforth, the uncertainties on the measured ratios, ed for the uncertainties on K_{0} .
The original mea	asurement data for the determination of K_0 is not shown in this example.
K _{bias_z4} :	Type B normal distribution Value: 0 Expanded Uncertainty: 0.001 Coverage Factor: 1
This bias factor factor (these cou correction, matri assumed to be a is estimated fror cover all effects.	is introduced to account for possible deviations in the value of the mass discrimination uld be variations over time, as well as other sources of bias, such as multiplier dead time ix effects etc.). The values of these biases are not known in this case, but they are around 0, therefore a value of 0 is applied. An uncertainty is associated to this bias, which m experience. In this case a standard uncertainty of 0.001 is considered to be sufficient to

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

Interim Results:

Quantity	Value	Standard Uncertainty
Cz	0.09260484 µmol/g	27.77·10 ⁻⁶ µmol/g
K _{y1}	0.999900	1.335 10 ⁻³
K _{b1}	0.998700	1.335.10 ⁻³
K _{x1}	0.999200	1.335 10 ⁻³
K _{b2}	0.998300	1.335.10 ⁻³
K _{z1}	0.998900	1.335 10 ⁻³
$\Sigma K_{zi} R_{zi}$	4.113314	3.905·10 ⁻³
$\Sigma K_{xi} R_{xi}$	4.112123	3.902·10 ⁻³
K _{x3}	1.000400	1.591 10 ⁻³
K _{x4}	1.001000	2.345·10 ⁻³
K _{z3}	0.999300	1.591·10 ⁻³
K _{z4}	1.000200	2.345 10 ⁻³
M _{Pb Assay1}	207.2103448 g/mol	665.1·10 ⁻⁶ g/mol

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

≎ _x : Quantitv	amount cont Value	tent of the sam	Distribution	Sensitivity	Uncertaintv	Index
		Uncertainty		Coefficient	Contribution	
Cz	0.09260484 µmol/g	27.77·10 ⁻⁶ μmol/g				
m _{y1}	1.1360000 g	200.0·10 ⁻⁶ g	normal	0.047	9.5•10 ⁻⁶ µmol/g	0.3 %
m _x	1.0440000 g	200.0·10 ⁻⁶ g	normal	-0.051	-10·10 ⁻⁶ µmol/g	0.3 %
m _z	1.1029000 g	200.0·10 ⁻⁶ g	normal	0.049	9.7·10 ⁻⁶ µmol/g	0.3 %
m _{y2}	1.0654000 g	200.0∙10 ⁻⁶ g	normal	-0.050	-10·10 ⁻⁶ µmol/g	0.3 %
K _{y1}	0.999900	1.335·10 ⁻³				
R _{y1}	640.00·10 ⁻⁶	14.14·10 ⁻⁶	normal	-0.077	-1.1.10 ⁻⁶ µmol/g	0.0 %
K _{b1}	0.998700	1.335·10 ⁻³				
R _{b1}	0.2936000	258.1·10 ⁻⁶	normal	0.21	55·10 ⁻⁶ µmol/g	9.3 %
K _{x1}	0.999200	1.335·10 ⁻³				
R _{x1}	2.140200	1.909·10 ⁻³	normal	-0.016	-31·10 ⁻⁶ µmol/g	2.9 %
K _{b2}	0.998300	1.335·10 ⁻³				
R _{b2}	0.5050000	459.6·10 ⁻⁶	normal	-0.14	-64·10 ⁻⁶ µmol/g	12.7 %
K _{z1}	0.998900	1.335·10 ⁻³				
R _{z1}	2.142900	1.909·10 ⁻³	normal	0.020	38⋅10 ⁻⁶ µmol/g	4.4 %
$\Sigma K_{zi} R_{zi}$	4.113314	3.905·10 ⁻³				
$\Sigma K_{xi} R_{xi}$	4.112123	3.902·10 ⁻³				
C _{blank}	450.0·10 ⁻⁹ µmol/g	200.0∙10 ⁻⁹ µmol/g	normal	-1.0	-200·10 ⁻⁹ µmol/g	0.0 %
K _{x2}	1.0	0.0				
R _{x2}	1.0					
K _{x3}	1.000400	1.591·10 ⁻³				
R _{x3}	0.914200	1.131.10 ⁻³	normal	0.013	15⋅10 ⁻⁶ µmol/g	0.7 %
K _{x4}	1.001000	2.345·10 ⁻³				
R_{x4}	0.0590100	123.7 · 10 ⁻⁶	normal	0.013	1.6·10 ⁻⁶ µmol/g	0.0 %
K _{z2}	1.0	0.0				
R_{z2}	1.0					
K _{z3}	0.999300	1.591·10 ⁻³				
R_{z3}	0.914700	1.131.10 ⁻³	normal	-0.013	-15·10 ⁻⁶ µmol/g	0.7 %
K _{z4}	1.000200	2.345·10 ⁻³				
R _{z4}	0.0587000	123.7·10 ⁻⁶	normal	-0.013	-1.6·10 ⁻⁶ µmol/g	0.0 %
M _{Pb Assay1}	207.2103448 g/mol	665.1·10 ⁻⁶ g/mol				
M _{z1}	207.976636000 g/mol	3.000⋅10 ⁻⁶ g/mol	normal	-130.10 ⁻⁶	-400·10 ⁻¹² µmol/g	0.0 %

Page 13 of 15

Determination of the amount fo lead in water using double isotope dilution and inductively coupled plasma mass spectrometry

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
M _{z2}	205.974449000 g/mol	3.000·10 ⁻⁶ g/mol	normal	-63·10 ⁻⁶	-190·10 ⁻¹² μmol/g	0.0 %
M _{z3}	206.975880000 g/mol	3.000·10 ⁻⁶ g/mol	normal	-58·10 ⁻⁶	-170·10 ⁻¹² μmol/g	0.0 %
M _{z4}	203.973028000 g/mol	3.000·10 ⁻⁶ g/mol	normal	-3.7·10 ⁻⁶	-11·10 ⁻¹² μmol/g	0.0 %
m ₂	1.0292000 g	200.0·10 ⁻⁶ g	normal	0.052	10⋅10 ⁻⁶ µmol/g	0.3 %
d ₂	99.93100 g	0.01000 g	normal	-540·10 ⁻⁶	-5.4·10 ⁻⁶ µmol/g	0.0 %
m ₁	0.36544000 g	50.00·10 ⁻⁶ g	normal	0.15	7.4·10 ⁻⁶ µmol/g	0.2 %
w	0.999990000 g/g	5.000·10 ⁻⁶ g/g	normal	0.054	270·10 ⁻⁹ µmol/g	0.0 %
d ₁	196.14000 g	0.03000 g	normal	-270·10 ⁻⁶	-8.2·10 ⁻⁶ µmol/g	0.2 %
k _{mol}	1.0·10 ⁶ µmol/mol					
K _{0_b1}	0.9987000	883.9·10 ⁻⁶	normal	0.062	55•10 ⁻⁶ µmol/g	9.4 %
K _{bias_b1}	0.0	1.000·10 ⁻³	normal	0.062	62·10 ⁻⁶ µmol/g	12.1 %
K _{0_b2}	0.9983000	883.9·10 ⁻⁶	normal	-0.070	-62·10 ⁻⁶ µmol/g	12.0 %
K _{bias_b2}	0.0	1.000·10 ⁻³	normal	-0.070	-70·10 ⁻⁶ µmol/g	15.3 %
K _{0_x1}	0.9992000	883.9·10 ⁻⁶	normal	-0.034	-30·10 ⁻⁶ µmol/g	2.8 %
K _{bias_x1}	0.0	1.000·10 ⁻³	normal	-0.034	-34·10 ⁻⁶ µmol/g	3.6 %
K _{0_x2}	1.0					
K _{bias x2}	0.0					
K _{0 x3}	1.000400	1.237·10 ⁻³	normal	0.012	15·10 ⁻⁶ µmol/g	0.7 %
K _{bias x3}	0.0	1.000.10 ⁻³	normal	0.012	12⋅10 ⁻⁶ µmol/g	0.4 %
K _{0 x4}	1.001000	2.121.10 ⁻³	normal	770-10 ⁻⁶	1.6·10 ⁻⁶ µmol/g	0.0 %
K _{bias x4}	0.0	1.000.10 ⁻³	normal	770-10 ⁻⁶	770·10 ⁻⁹ µmol/g	0.0 %
K _{0 v1}	0.9999000	883.9·10 ⁻⁶	normal	-49·10 ⁻⁶	-44·10 ⁻⁹ µmol/g	0.0 %
K _{bias y1}	0.0	1.000·10 ⁻³	normal	-49·10 ⁻⁶	-49·10 ⁻⁹ µmol/g	0.0 %
K _{0 z1}	0.9989000	883.9·10 ⁻⁶	normal	0.042	37.10 ⁻⁶ µmol/g	4.3 %
K _{bias_z1}	0.0	1.000·10 ⁻³	normal	0.042	42·10 ⁻⁶ µmol/g	5.5 %
K _{0_z2}	1.0					
K _{bias z2}	0.0					
K _{0_z3}	0.999300	1.237·10 ⁻³	normal	-0.012	-15·10 ⁻⁶ µmol/g	0.7 %
K _{bias_z3}	0.0	1.000·10 ⁻³	normal	-0.012	-12·10 ⁻⁶ µmol/g	0.4 %
K _{0_z4}	1.000200	2.121.10 ⁻³	normal	-750·10 ⁻⁶	-1.6·10 ⁻⁶ µmol/g	0.0 %
K _{bias_z4}	0.0	1.000·10 ⁻³	normal	-750·10 ⁻⁶	-750·10 ⁻⁹ μmol/g	0.0 %
с _х	0.0537374 µmol/g	179.9∙10 ⁻⁶ µmol/g				

Date: 08/29/2007 File: EURACHEM A7.smu

Page 14 of 15

Determination of the amount fo lead in water using double isotope dilution and	
inductively coupled plasma mass spectrometry	

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
C _x	0.05374 µmol/g	180∙10 ⁻⁶ µmol/g	1.00	manual

Date: 08/29/2007	File: EURACHEM A7.smu